A discussion on process, metrics, automation & outsourcing

By, M. Alam

The goal of this paper is not to discuss these key elements in great detail but to understand them well enough to hopefully find a common sense approach towards a workable solution of today's complex, demanding and ever changing nature of software testing. The discussion is based on my experience over the years in the industry in various capacities (Tester, Test lead, Automation engineer, Automation lead & Coordinator for off shore test teams).
Process: As we are gradually moving away from more conventional waterfall to agile development environment, we find lot of places are somewhere in between these two environments. There are a number of moving pieces that have an effect on both development and QA in an agile environment. User stories are constantly changing as they are being coded and even after they are coded and unit tested. This creates a challenge for QA as they are creating test scenarios, writing test cases and start testing a particular functionality. This is particularly difficult for a new application as there are no existing testbeds for that application. By definition, an agile environment is rather chaotic and more fluid than conventional top down structure of waterfall environment. The fluid nature of this environment requires a constant interaction between all parties (PDM, PJM, developer, tester, test manager and development manager) involved in a given project. In most places, parties are not in a constant communication to address the changes made in user stories. Parties are not closely located and thus often times require them to send e-mails back and forth to address any upcoming changes or changes already made to user stories or design specs. In some cases, testers and developers are in another country in a different time zone which makes it even more difficult to have an instant communication. Since partial outsourcing is a current fact of life and will continue to be the case for many more years to come for many more organizations, I am not sure if we can have an agile environment in it’s true sense. We can call this current state a Quasi or Semi Agile environment. But in any case, from one end of the spectrum of an agile environment where a very little documentation is needed to another end of more conventional waterfall environment where a great deal of documentation is required, we can have a Quasi-Agile environment where we will need just enough documentation such that the documents can be modified on the fly as needed. An agile proponent will advocate that too much documentation is too complex and too structured, but I, on the other hand would argue that there is a lack of discipline and less accountability in too little documentation. This argument of discipline and accountability will require me to discuss the use of metrics in such test environment.

Metrics: Metrics are a lot of work, but also very powerful tool to measure,

· Amount of work need to be done

· Effectiveness of work that has already been done
· Work done, traces back to the work needed to be done.
Metrics are usually more useful to test managers than to the testers. As a test lead in a Quasi-Agile environment I have found the following metric very useful. A structured environment promotes and sometimes requires the need for test case review. One of the many benefits of reviewing test cases is to eliminate ambiguity by adding some required steps or by taking out the unnecessary steps from the test cases. But the process of reviewing test cases is very laborious and time consuming. I do understand and support the need for test case review, but at the same time it is becoming increasingly difficult for me to set a side some time for this purpose alone. But, I knew that I needed to have some kind of measuring unit which would tell me the depth and breadth of my test coverage in detail. So, with that in mind I had created a metric which I think probably have served almost similar purpose with a lot less time. It,
· Lists every single bullet of a user story

· Describes the test scenarios for each bullet

· Lists the number of test cases need to be written for each bullet
There are several advantages of reviewing this metric as oppose to actual test cases. As one reviews this document, he/she will have focus on the test scenarios for a particular bullet. It is important to concentrate on the test scenarios and not get side stepped by the steps, setups, results etc. (although these are important as well). For example, let’s look at the following metric,
	
	
	 Test Coverage & Estimates
	

	
	
	
	

	
	
	
	
	

	Reqs
	
	Description
	Test Scenarios
	Test cases

	3.1.3.1.1
	
	In Lists & Spreadsheet the user selects one or two lists and selects quick graph option from menu.
	In L&S create and select,
- One list and do a quick graph
- Two lists and do a quick graph
	2

As you can see, these two test scenarios are probably not sufficient to test this particular user Story (3.1.3.1.1). This only addresses the happy path or positive test scenarios. One can add the following test scenarios to test this bullet,

· Create and select more than two lists

· Select two adjacent lists and an empty column

· Select one list, one empty column and another list
After adding these three test scenarios, the metric looks as,

	
	
	 Test Coverage & Estimates
	

	
	
	
	

	
	
	
	
	

	Reqs
	
	Description
	Test Scenarios
	Test cases

	3.1.3.1.1
	
	In Lists & Spreadsheet the user selects one or two lists and selects quick graph option from menu.
	In L&S create and select,
- One list and do a quick graph
- Two lists and do a quick graph
- More than two lists and do a
 a quick graph

- Two adjacent lists and an
 empty column and do a quick
 graph

- One empty column and another
 list and do a quick graph
	5

The point is that, this document keeps the focus on creating the test scenarios and thus increases the test coverage. This document may also serve as a guide to do an estimate on how many test cases we need to write for a particular functionality and thus help us estimate the time it may take to write those test cases (depending on the knowledge and the expertise of the testers about that functionality). The thing to remember here is that, this is an estimate and the idea is that the estimated numbers should reflect the actual numbers (within an acceptable difference). If the estimated numbers are far a part from the actual numbers, then we are probably not doing a good job on our estimates or we are writing too few or too many test cases than we should.
Automation:
There are so many excellent articles (Automation Project Management ; Software Test Automation, Myths & Facts; Totally Data-Driven Automated Testing etc.) on test automation and adding more to this will only prove to be redundant. So, I will limit the discussion of using automation in a Quasi-Agile environment. I will further limit my discussion by only focusing on our AUT in our current test environment. As we have a stable and a some what mature application (although we will be adding more applications in the suite), we are currently debating as to what would be a good architecture for our test environment. We have a suite of automated test scripts that we only use for Build Acceptance Test (BAT). It used to take 3 testers a total of 18 to 24 hours to complete the BAT. Now we run the test scripts for about 5 hours to complete the same test. After the successful implementation of test automation in the area of BAT, we are cautiously optimistic about future automation undertakings. Since the data driven design for BAT automation has proven to be successful, we are strongly recommending to keep the same design for future automation. The recommended design (Data Driven) will save us time in a number of ways,

· Documentations on design, terminology and workflow are done
· Code for Control Driver & Driver (main engines of the data driven design) is already completed

· Functions for all the controls (Push button, Edit field, Drop-down, Spin control etc.) are written
· Error routines are completed
· Only new sets of test data need to be created

Automation of a set of test suites (Regression, GUI, Functional etc.) is a huge undertaking. I find it useful to do a section at a time and implement it after the unit test. This process of test scripts development goes hand in hand with the Quasi-Agile development environment. For our test environment, we have identified that testing the input buffer for a set of data/edit fields will make a good candidate for next phase of automation. Some bug regression is always a good candidate for automation. Although I would prefer to leave the critical bugs for manual regression as they require some setups and careful observation.
Outsourcing: I will again limit my discussion of outsourcing to our Quasi-Agile test environment. We do outsource a fairly large number of our test execution to part of Europe and Asia. Because of the nature of our test environment where user stories and design documents are constantly changing, we have made a conscientious decision not to outsource the followings,
· Creating test scenarios

· Evaluating test scenarios

· Writing test cases

· Executing new and old core functionalities

We have also evaluated some of the outsourcing models where some advocated developing a pyramid shaped model. The model lists the candidates for outsourcing on both sides of the pyramid and the candidates for in house testing on the base of the pyramid. After looking at few other models, we have decided to create our own model which is to simply ask what are the good candidates for next phase of automation. We have come up with the followings,
· All GUI test cases

· Stretching the input and output buffers

· Some regression

· Some bug regression

· Exploratory testing with some guidelines (Not a candidate for automation)
This approach of outsourcing low risk, less complex and repetitive actions oriented test cases allows us to concentrate on high risk and more complex test cases which sometimes require the attention of subject matter experts. It takes years to become a subject matter expert in any application and outsourcing companies do not invest time and effort to become one unless they see the possibility of a long term opportunity with that particular vendor. It is probably counter-productive for an outsourcing company to have a number of their resources tied down to a particular vendor. They would rather have these resources available for other vendors as well. As we don’t have a very good documentation of our user stories, design specs etc, we also looked at the potential threat associated with the time will be spent by them to clearly understand the requirements. It would take them more time to come up to the speed and thus would have an adverse effect on the project . This approach of outsourcing low risk, less complex test case raises an interesting topic for debate and that is to ask if it is possible for automation to replace or limit the volume of outsourcing. My guess is that, over time the iterative process of test automation with a fairly decent architecture where re-use of code and ease of use is promoted may considerably limit the volume of test effort is outsourced. Automation, like outsourcing has proven to save time and money in the long run.
