[image: image1.png]| éDFTWARE
QA

ASSOCIATES

www.sqa-associates.com

QA/Test Plans and Procedures:

The Value of Software Test Documentation

Table of Contents

2Introduction

3"Best Practice" Test Plans and Procedures

4Why Test Plans and Procedures Are Often Not Documented or Updated

4Case Studies: Examples of Failures to Document Test Plans and Procedures

5The Downside of Today's Fast Moving Software Development:

5Assessing the value of software test documents

5Some important uses for test documentation.

6Test metrics in QA documents and reports -- why they are important

6Commonly used software test metrics

9Test Plans and Procedures: Best Practice Documents

14Conclusion

Introduction

Well-written software quality assurance plans and procedures present a clear and accurate picture of software test planning and execution. Test Documents provide an advantage that allows all persons with critical "needs to know" and/or approval responsibilities, important information about…

· Test plans

· Test status reports

· Test results

With written documents, there's no guessing!
Written materials serve as a basis for present and future cost reductions and process improvement.

Software, for which you are responsible, will be of higher quality, provide greater security and integrity when it's planned and tested according to best practices.

Yet, key QA and test documentation is often left until the last minute -- or not at all -- and may be written hastily by non-professional writers. Worse, it's often an "after-the-project" nicety rather than a requirement of the test project itself.

Topics addressed in this paper

This paper describes why software test documentation is important, what types of test plans and procedures are needed and the benefits that will be derived.

1) Best Practice test plans and procedures: a summary of those commonly used to develop high quality software.

2) Why test documents are often not written nor kept current.

3) Examples: Failure to document test plans and procedures

4) Today's often fast moving development/test environment and its affect on project documentation.

5) Planning and creating test documents: Test planning and execution is very similar to software development -- test plans and processes should be created and followed with great care.

6) Testing metrics in QA documents and reports (e.g., mathematical representations, statistics); these metrics provide the greatest motivation to create documentation to support test planning assumptions and describe current status during testing.They serve as an important aid to improve QA and test processes.

7) Test plans and procedures: Best Practice documentation; what should be documented, what's the value of doing so and the possible downside of failing to put each plan and procedure in writing.

	Quality Assurance and test documentation is important organization and business proprietary knowledge -- a record of test plan and procedure design, development, implementation, operation, and revision data that successors will need to follow.

For this reason, all plans and procedures must be documented and become an integral part of the QA and test operation from day one

Documented test procedures and plans often are tacked on as an afterthought, but are critical as a permanent record of operation methods, development techniques, and QA policies.

QA professionals would likely agree that the QA/test documents of greatest importance and usefulness are among those listed in the table below. (See: "Best Practice" Test Plans and Procedures)Test-related documents are key to successfully implementing your quality objectives.

Following are elements often used for large software projects. The number of plans and process documents needed for smaller projects may not be as extensive, however, topical elements from most of these apply to smaller projects as well.

The two primary categories of test documentation
Test plans: Plans for testing the system including detailed specifications, descriptions and procedures for all tests. Also, test data reduction and evaluation criteria.

Test analysis documentation: Documentation that covers the test analysis results and findings; presents the demonstrated capabilities and deficiencies for review; and provides a basis for preparing a statement of the application system readiness for implementation.

Test documents will quickly provide substantial ROI as the QA/test organization is able to better prepare for and conduct testing: test plans, test system designs, implementation, and ongoing process improvement.

"Best Practice" Test Plans and Procedures

	· Acceptance Test Plans
	· Regression Test Plans
	· Test Result Metrics

	· Beta Test Plans
	· Risk Management Plan
	· Test Result Reports

	· Configuration Mgt. Process
	· Stress & Load Test Plans
	· Test Schedules

	· Developer (Unit) Test Plans
	· System Test Plans
	· Test Staff Selection Criteria

	· Error/Incident Mgt. Process
	· Test Case Descriptions
	· Test Status Reporting

	· Functional Test Plans
	· Test Case Matrixes
	· Test Tool Descriptions

	· Informal/Exploratory Test Plan
	· Test Conditions Descriptions
	· Test Dept. Training Plans

	· Installation Test Plans
	· Test Entry and Exit Criteria
	· Testing End-User Manuals

	· Integration Test Plans
	· Test Plan Development Process
	· Testing Standards and Policies

	· Quality Plan
	· Test Plan Review Process
	· Usability Test Plans

	· Test Strategy
	· Test Plan -- Sum. All Phases
	· Test Readiness Review

Why Test Plans and Procedures Are Often Not Documented or Updated

Listed below are probable causes for the lack of documentation or maintenance thereof:

· Quantifiable quality objectives have not be developed and approved

· Many are concerned with process bureaucracy

· IT Executives may not be providing the direction and support that's needed to support best practice planning and process development

· Testers and others in IT management may need further QA training to understand the benefits of test planning and processes that in most cases should span the entire software development life-cycle.

· There may be increasing reliance on developers to test their own code (e.g., "Extreme Programming")

· A general failure to understand the importance of independent, planned testing may exist within the organization.

Case Studies: Examples of Failures to Document Test Plans and Procedures

Following are real-world examples and consequences of failing to document test plans and procedures.

· A large financial institution failed to document test plans & the related process for their credit card telemarketing test department. The test manager delayed serious surgery for more than a year because no one would be able to follow the day-to-day testing necessary to keep telemarketing systems up and running.

· A Wall Street securities firm had no disaster recovery plan for software testers until early 2001. Fortunately, the IT disaster recovery plan was completed and tested a few months before the September 11th disaster. The team immediately lost their test environment, but was able to almost instantly recover and continue operations at a nearby data center.

· One of the world's largest insurance firms had no test plans and process for their new marketing Web site before it was launched. The site was announced and became available. However, many URL's were "broken", words were misspelled, inconsistent Web content was pervasive, and many insurance application forms were incomplete and problematic.

One month after user complaints and press coverage of the poorly designed site, the company removed it from the Internet. Only after six months was a new site successfully re-designed and fully tested then re-launched to public acclaim. The site remains available in its new form and is widely used.

The Downside of Today's Fast Moving Software Development:

"Should we take time to document QA and test plans/processes?"

In the Internet era, in organizations with little software configuration management, projects are often built and tested without adequate documentation -- e.g., no formal test plans, no test procedures.

In organizations where test plans and procedures are available, they often are not updated when modifications and new requirements are requested from clients. For example, a Project Manager will convey modifications to his/her team by word of mouth then gets the modifications done and tested without updates in any documentation. It's incumbent upon this Project Manager to get the modifications updated in the development documentation, but when he/she prioritizes to get the changes implemented in the code, test documentation efforts gain low priorities.

Such a scenario will have a direct impact on the testing process. If you are deriving test cases from documentation, your test cases are going to get aged soon. It is not worthwhile to look back at them. We cannot use them because they have no relevance to current code.

Let's consider that the list of new/changed requirements will be changed frequently, say 4-5 modifications per day. The tendency of IT staff is to forget about test documentation and to concentrate more on implementation. This happens because of the time and associated (perceived) costs. The need of rigor and cost controls pushes the Project Manager to forego test documentation activity, as he/she considers it to be overhead. The project life proceeds in an unplanned, "unscripted" and undocumented manner.

Assessing the value of software test documents
Documentation of the software test process should generally describe 1) the plans and priorities for testing, 2) the tests to be performed, and 3) results of those tests. Software testing is too important and complex not to formalize the process.

The same high standards used for software development documentation should be used for the test phase. The test process is a development process with design, test case development, and verification that the test process will work. The type and extent of documentation needed will depend on its usefulness within all of IT and test departments.

Test cases are valuable assets and should be easy to retrieve. Reuse of test cases is desired since many test cases can be used at different testing levels; e.g. test cases used for system testing can also be used for acceptance testing. To be able to re-use test cases they have to be documented. The test cases should preferably be documented according to an accepted standard, e.g. IEEE Standard for Software Test Documentation.

Some important uses for test documentation.

· Verify application requirements: High-level test conditions documented early are used to verify the correctness of requirements. A trained test team knows how to define tests that determine whether the requirements are clearly defined to be tested.

· Involve users in tests: Users learn which tests will be conducted before the software is delivered. Doing so helps users clarify what is expected from the system.

· Define test resources: A documented test plan describes tasks that need to be performed during the test process. The plan then allows easy identity of resources needed for testing and therefore early budgeting and commitments can be gained.

· Identify risks: With identification of functions to be tested, users and testers can prioritize what can, and perhaps cannot, be tested due to time, resources and importance.

· Create test scenarios: Test scenarios and test case documentation set the basis for all tests and test cases to be used in testing. Classes of tests are identified early.

· Evaluate test results: Documentation should contain the expected results from each test transaction.

· Retest the software: Software must be retested throughout development, testing, and maintenance. Documented testing processes provide for reuse and repeatable tests that are essential, particularly for regression tests.

· Analyze effectiveness of tests and improve processes: Documenting test results provide a basis for analyzing the soundness of the application system and to substantiate that opinion to project stakeholders.

Test documentation is important for conducting initial tests and equally as important for regression tests during maintenance and upgrade phases.

Test metrics in QA documents and reports -- why they are important

Test metrics are numbers that show a relationship between two or more variables. Metrics are used in most disciplines as a basis of assessing the effectiveness of plans and processes.

A few of the most common metrics used in software testing are listed below. Most of the metrics should be planned or estimated in advance with actual results maintained in documentation. Assessments can then be conducted using metrics to determine whether the tests were effective and whether process improvements are needed.

Commonly used software test metrics

· System tested to date (%)
· Test cases total, passed/failed/remaining to be run

· Problems found, their severity's

· Problems open/closed
· Problems/defects discovered during test; after production

· Costs of tests -- estimates and actuals

QA and test metrics needed by managers, testers and users/customers

Table 1 shows a sampling of metrics used in test plans & reports and who will need them during and after testing. Metrics such as these can be indispensable when planning and budgeting for new tests, improving processes and assessing the effectiveness of earlier tests.

Table 1: Test plan, test report and process metrics

	Report
	Users/Audience

	Test Coverage Analysis
	Managers: Development, business, technical support, test

	Defect Analysis
	Managers: Development, business, technical support, test

	Bugs: detailed reports
	Developers, technical managers

	Bugs: summary reports
	Managers: Development, business, technical support, test

	Test Cases: detailed reports
	Developers, technical managers

	Test Cases: summary reports
	Managers: Development, business, technical support, test

Test Plans and Procedures: Best Practice Documents

Below, we list the types of QA/test plans and procedures that have proven to be indispensable for planning tests, reporting test status, and improving software test processes. In a nutshell, each is described and their likely benefits when documented and used. For those who decide that the documents will not be prepared, we note the likely downside and ramifications.

Table 2: Test Plans and Processes
	Plan or Process
	Description and Value
	If Not Documented, the Possible Ramifications

	Acceptance Test Plans
	Plans to determine whether a system satisfies defined user criteria. A final opportunity for users to identify deficiencies by means of documented test cases or scenarios.
	System users will not have had an opportunity to test software in a systematic way which could give rise to serious conflict and deficiencies arising after the system is in production.

	Beta Test Plans
	Plan to assure that operational testing at a site not otherwise involved with the software developers is successfully completed.

	The beta test will most likely be conducted in an exploratory, ad hoc manner (often by users, not trained testers) without the benefit of planned scenarios and tests of important functions.

	Configuration Mgt. Process
	Continuous management of changes to code, test plans, test cases, test data, and test results.
	· Management and traceability of changes may be impossible

· The ability to reconstruct an environment to a configurable state may be lost

· Centralized and standardized code management functions will not exist

	Developer (Unit) Test Plans
	A plan for individually testing components of software that perform detailed processing. The plan determines when unit testing is completing.
	Unit testing may not be conducted consistently among developers or may not be conducted at all. Discovery of defects will be delayed until later phases of testing.

	Error/Incident Mgt. Process
	Process that provides management of any difference between program specifications and actual program behavior, whether critical or not, then tracks those incidents through resolution.
	Error/incident reporting, as a primary testing deliverable, may be done differently and ineffectively by individual testers. All errors/incidents may not be tracked and resolved sufficiently.

	Functional Test Plans
	Functional test plans describe testing of single or multiple functions. The plan defines by means of entry and exit when testing of functions is ready to begin and when the testing is complete.
	Standard plans and policies for conducting functional testing may be overlooked, not used. Test case selection and execution may not be based on a well-chosen selection of functions from specification of the component without reference to its internal workings

	Informal/Exploratory Test Plans
	Exploratory testing is test design and test execution at the same time. It's often done without a plan since testing is done according to the whim of individual testers.
	Exploratory testing, though ad hoc, should be guided by a roadmap. Without a planned guide for testing, the path taken may be lost and actual functions tested will not be known.

	Installation Test Plans
	Planned tests that will assure that all users can install and begin using the system.
	Installation is often the first exposure users will have to your system. Without an installation test plan, you may miss testing key steps that new users will encounter.

	Integration Test Plans
	Testing performed to expose faults in the interfaces and in the interaction between integrated components

	All interfaces may not be identified and tested.

	Test Plan (Sum. of all phases)
	A record of the test planning process detailing the degree of tester independence, the test environment, the test case design techniques and test measurement techniques to be used, and the rationale for their choice

	Tests may be conducted among developers, testers and users without coordination, planning, resource and time estimates and more. As a result, tests may be duplicated, inefficient, and incomplete.

	Quality Plan
	A document setting out specific quality objectives, practices, resources and sequence of activities relevant to a particular product, service, contract or project.

	Quality assurance tasks may not be identified for the entire software lifecycle (e.g., requirements, design, test and beyond). Instead, quality efforts may be identified for only traditional testing (e.g., unit test, integration, and system tests). Other important quality efforts such as requirements validation, user document verification, stress testing, etc. may be unidentified and not addressed during tests.

	Regression Test Plans
	Plans for retesting programs following modification to ensure that faults have not been introduced or uncovered as a result of the changes made.

	Regression tests are among the most important tests during development then after the system is in production. Without well-planned regression tests, well-planned repeatable tests -- which are necessary after system builds and during the maintenance period -- cannot be conducted to determine if new problems have emerged or if system function has regressed since changes were made.

	Risk Management Plan
	The plan communicates both preventive action, or risk avoidance, and corrective action, or risk mitigation, to each of the identified risk factors, particularly those with a medium to high rating level.

Risks may include any phase that may be late, programmers cannot be found. The plan addresses each identified risk and indicates the actions that are planned to eliminate or mitigate that risk.
	The most important functions may not be identified and prioritized for testing. Time, resources, and money may be wasted testing functions of lower importance. Risks related to costs, tools and techniques needed, and staffing may not be sufficiently identified early enough for resolution within the plan, schedule, and budget constraints.

	Performance, Stress & Load Test Plans
	Testing conducted to evaluate a system or component at or beyond the limits of its specified requirements.

	Users may be the first to encounter, poor performance, time-outs, lost data, and outages. In some cases, systems have been brought down and out of production while problems related to system capacity were corrected.

	System Test Plans
	A plan process of testing an integrated system to verify that it meets specified requirements.

	Final tests may be conducted in an exploratory, ad hoc manner overlooking tests in key areas that would more likely be found through a formal test plan.

	Test Case Descriptions
	A set of inputs, execution preconditions, and expected outcomes developed for a particular objective, such as to exercise a particular program path or to verify compliance with a specific requirement

	Without documented test cases, testing is often exploratory in nature (i.e., design and execute tests as you go). Undocumented test cases may not be repeatable either to determine whether problems were fixed or when tests must be re-done for other reasons.

	Test Case Matrixes
	A spreadsheet-like chart showing functions/factors to be tested (rows) and the test technique(s) (columns) by which the functions will be tested.
	Because test case/condition matrixes are a highly structured means of identifying all test conditions and how they'll be tested, a failure to create such a matrix may result in many functions not being fully tested.

	Test Conditions Descriptions
	All functional and other conditions to be tested with descriptions of expected outcomes.
	Conditions tested may not be all inclusive; expected outcomes may not be fully understood or vary by tester. Tests may not be repeatable when re-testing is required.

	Test Dept. Training Plans
	A plan that lays the groundwork for a continuous upgrade of skills of test staff.
	Training may become an afterthought or conducted only when "needed".

	Test Entry and Exit Criteria
	For each type of test, the criteria that will determine whether testing can begin (entry criteria) and whether testing is completed (exit criteria)
	Tests may begin before necessary conditions exist for actually commencing the tests. Tester experiences may include 1) tests from early phases being been insufficiently completed, 2) test environments that are not completely set up, 3) integration tests from previous phases not sufficiently completed.

	Test Plan Development Process
	The process by which test plans and procedures are planned for a new project or for new processes. A guide identifying standards, policies, documents procedures and approvals necessary to plan all testing.
	Without test plan development standards and policies, test plans across phases (unit, system, etc.), may overlap, be inconsistent, or non-existent.

	Test Plan
	A record of the overall test process detailing test objectives, success and acceptance criteria, the degree of tester independence, the test environment, test tools, the test case design techniques and test measurement techniques to be used, and the rationale for their choice.
	Test planning for all phases will likely be done inconsistently among team members. Much effort may be duplicated (test tool selections, entry/exit criteria, acceptance, criteria, more) as the overall test plan will only be in the minds of those planning the test effort; not on paper for task assignments, resource evaluation, and budgeting efforts.

	Test Plan Review Process
	The process that describes how all test related documents and processes will be reviewed and approved before use and implementation.
	Without documented plan reviews by key staff (including designers and developers), test plans and processes may not contain all facets of testing that will later emerge as important -- even show-stoppers -- by IT managers or users.

	Test Readiness Review
	The test readiness review is usually conducted following completion of component testing or software integration testing. The purpose is to ensure readiness to begin formal integration testing or system testing without complications, and to ensure that test documentation is complete, that errors have been removed, and that use of the test facilities has been planned properly. The following are general questions that might be asked at these reviews
	You might not know whether:

· Approved changes have been made to the code as result of source code review or, as appropriate, component test or integration test.

· The error rate is sufficiently low to warrant beginning the next type of testing.

· All test cases/procedures are complete.

· The test facility is ready; schedules approved, personnel and physical requirements specified.

· All test tools have been checked and ready.

· All test procedures have been checked.

	Test Result Reports and Test Result Metrics
	Test Preparation data to quantify the work to be done before test execution

· How many test conditions have been identified and documented, by criticality/priority

· How many tests are required to exercise these test conditions

· Total number of tests to be built for Manual and Automated execution

· Test Execution statistics that report the rate at which tests are being applied and the failures arising

· How long it takes to create, catalogue and execute both manual and automated tests

· How many tests have been executed to date

· How many tests have passed, failed

· Where, why and the severity of all tests that have failed

· How many retests have been executed and how many failed on retest
	To survive, the Test Manager has to demonstrate the effectiveness of the testing process. The evidence to show this is required to be more than software defect metrics – how many raised, how many outstanding/ fixed by severity and urgency etc. It needs to be a comprehensive measurement of the code being tested and of the testing service provided to test it.

	Test Schedules
	A list of testing tasks, when they will be started and finished, and their duration
	A test project without test schedules that have been carefully planned and prioritized will leave the project team without knowing test resource requirements, what will and will not be tested and the timeframe for both individual tests and the entire test.

	Test Staff Selection Criteria
	Criteria by which tester recruiting, staffing and training is selected.
	For tests to be conducted according to plans and objectives, test staff must be carefully chosen based on skills and experiences. A carefully planned criterion for selecting test staff will help assure successful testing.

	Test Status Reporting
	Indicates when testing is done, problems/incidents resolved or to be resolved, percent testing complete, much more. Test result reports should be tailored to the needs of all parties including test management, IT management, and users.
	Lack of test status reports fails to allow issues to be effectively tracked, resolved, and retested.

	Test Strategy
	A means of communication with the customer commissioning the test on such matters as the organization of testing and the strategic choices that go with it. The test strategy indicates how testing is to be carried out. In order to make the best possible use of resources and time, it is decided on which parts and aspects of the system the emphasis should fall. The test strategy forms an important basis for a structured approach to testing and makes a major contribution to a manageable test process.
	Without a documented test strategy, all parties from developers to testers to users may have different understandings of levels of testing to be conducted and the focus/objectives of testing. If expectations are not clarified, testing may end with various parties in disagreement over what was to be achieved during all levels of tests.

	Test Tool Descriptions
	Documents listing test tools (e.g., checklists, capture/replay programs, code coverage monitors, defect management, spreadsheets, etc.) provide significant insight into how test objectives will be met, schedule commitments will be maintained, and costs managed.
	Failure to document test tool requirements may not allow testers a voice in tool evaluation and selection and does not sufficiently allow for tool acquisition planning nor budgeting, and may result in ad hoc tool selection as needs arise.

	Plan for Testing End-User Manuals & Documentation
	A plan to assure that the right documentation has been prepared, is complete and is error free.
	Lack of a systematic plan to test and evaluate documentation may lead to as many problems or more than if the system is laden with bugs. Users must be able to understand the operation of the system or else the system is of little value.

	Testing Standards and Policies
	Statements of the organization's official position or rules for testing. Provide a base for testing documentation and support the need for consistency from release to release and project to project.
	Documentation may not meet user needs as documents are created based on time available, whims of writers, varying capabilities of writers, more.

	Usability Test Plans
	Testing the ease with which users can learn and use a product.

	Software may be delivered without first understanding then implementing usability characteristics required by users.

Conclusion
Overlaps between project phases, coupled with the need for a rigorous process to control changes to requirements, highlights how critical the role of documentation is in a project.

At the outset of a project, the Project Manager should define the core list of development and test documents to be produced. This list will usually include a definition of the project requirements, a project plan setting out budgets and timetable, a testing plan, and an implementation plan.

Test documents should be on the core list of important deliverables from the project… and should be maintained—that is, kept up to date—throughout the project and throughout the life of the system.

© 2001, Software QA Associates

8
14
© 2001, Software QA Associates

