PRESENTATION
BIO
PRESENTATION
SUPPLEMENTAL MATERIALS

T7

5/16/2002 11:30:00 AM

WRITING BETTER DEFECT
REPORTS

Kelly Whitmill
IBM

International Conference On
Software Testing Analysis & Review
May 13- May 17, 2002
Orlando, FL USA

Kelly Whitmill

Kelly Whitmill has over 18 years experience in software testing. Most of that time his role has
been that of a team lead with responsibility for finding and implementing effective methods and
tools to accomplish the required tests. He is particularly interested in practical approaches that
can be effective in environments with limited resources. He has a strong interest in test
automation. He has worked in both small and large company environments. He has worked on
PC-based, Unix-based, and Mainframe-based projects. He currently works for the IBM Printing
Systems Division in Boulder, Colorado.

Writing Effective Defect Reports
Kelly Whitmill

IBM Printing Systems Division
whitmill @us.ibm.com

"

Reasonsto Write Effective Defects

Reduce the number of defects returned
Improve the speed of getting defects fixed
Improve the credibility of test

Enhance teamwork

lmprove product quality

Defect reports may be our most important
deliverable

Defect Fields

i Open Defeck)

Component; |

Remark.z:
E dit... |

Abstract:

Mame:

Releaze:

FOocus
of this
Presentation

Level:

E mvironmment;

Reference:

Frefis;

Severity:

el 1
Uk e

FPhaze found;

Fix T arget:

Symptom: l
ODC Ackvity: I
ODC Trigger: l
ODC Impact: l

L] L] Lef L]

] I Zpply I Clear Cancel Import i Help |

Defect Remarks

Condense
Accurate
Neutralize
Precise
|solate
Generalize
Re-create
mpact
Debug
Evidence

Can Pig Ride?

Condense CAN PIG RIDE?

o Say it clearly but briefly.

e Example 1: | was setting up a test whose real intent was to

detect memory errors. In the process | noticed a new GUI field
that | was not familiar with. | decided to exercise the new field. |
tried many boundary and error conditions that worked just fine.
Finally, | cleared the field of any data and attempted to advance to
the next window, then the program abended. Several retries
revealed that anytime there is not any data for the “product
description” field you cannot advance to the next window or even
exit or cancel without abending.

Rewrite: The“exit”, “next”, and “cancel” functions for the s
“Product Information” window abends when the “ Product A\%\kj)
7 /5] N

——_—

Description” field is empty or blank. AN

* Accurate CAN PIG RIDE?

ISt auser error or setup problem?
System problem?

Application problem?

Test case problem?

Example 1:

— Reported Problem: Print server is unable to
connect to remote printer.

— Real Problem: Network was down

* Accurate CAN PIG RIDE?

e Example 2.
— Reported Problem: Ip -d prl #etc/motd hangs

— Real Problem: Syntax error caused command to
walit for user to type in input, which was never
provided.

* Accurate CAN PIG RIDE?

e Example 3.
— Reported Problem: Remote query is unable to find
an existing printer. Local query can find the printer.

— Real Problem: Database corrupted from previous
test case. Remote clients can’'t get data from
database.

Neutral CAN PIG RIDE?

* Neutral - Just the facts, no zingers, no humor,
NO emotion, N0 Ssarcasm

e Example 1.

— Don't: Though thisisavery nice window and people
should enjoy the interaction and may even be saddened
when they have to leave this window. However, you
may want to consider providing some sort of exit from
this window.

— Do: Thereisno way to exit from this window.

| /4
NENLL
lgc%_ \

~ e NN

Neutral CAN PIG RIDE?

« Example 2: Reopen areturned defect.

— Don’t: As could have been determined from the
original defect with very little effort, function ABC
does indeed abend with any negative value as
INput.

— Do: Function ABC abends with any negative value.

Examples of some values tested include:
-1, -36, -32767

Precise CAN PIG RIDE?

e Explicitly, what isthe problem?
e Don't: Issuing acancel print when job isin PRT state (job is

already in the printer and A/400 is waiting to receive print

complete from printer) causes the twinax port to not time oui.
The printer never returnsto a READY state and indefinitely

displays “PRINTING IPDS FROM TRAY 1” in the op-pandl.

Do:

Canceling ajob whileit isprinting causesthe printer to

hang.

|ssuing a cancel print when job isin PRT state (job is already

In the printer and A/400 is waiting to receive print complete

from printer) causes the twinax port to not time out. The, | S
printer never returnsto aREADY state and indefinitely ' —xV/ -

A 1 SN

X |solate CAN PIG RIDE?

 \What has been done to isolate the problem?

 Example 1: Printer hangsif ajob Is cancelled
while printing.
Does it hang for all document types? PCL? PS?

Does It hang for all document sizes? Small? Big?

Does It matter when | cancel 1t? Start? Middle?
End?

— Arethere traces or logs that add useful insight.

X| solate (continuedy CAN PIG RIDE?

o Example 2: Web page link does not work.
— System OK? Network up?
— Link destination up and available?
— Setup, configuration, tools, test case ok?
— Firewall problem?

— Authorization problem?
Automated tool problem?
Does it work outside of the test case?

Did previous test cases cause this problem?
Problem with text link? Graphic link? Both? ;%\{é; -
— Which Browsers? M3 NN

X Generalize CAN PIG RIDE?
* \What has been done to understand how general
the problem 1s?

e Example 1. Error message for “file not found”
error has garbage characters for the file name.

— Does every message that requires an insert have the

same problem?

X Recreate CAN PIG RIDE?

What is essential to re-create this problem?
Re-creatabl e?

Have you re-created it?

What isthe ssmplest, most reliable, set of stepsto re-
create the problem? Be exact! No assumptions.

Describe the environment/conditions

If you cannot re-create

— Say so in the defect report

— Provide as much useful information as possible

— Consider asking experienced developer or tester //
to examine the problem state. %\k‘

7 \\\

| mpact CAN PIG RIDE?

What isthe impact if the bug were to surface in
a customer environment?

If needed, sall the defect
Be accurate, don’'t underseall, don’'t oversall

Example 1.

— Don’'t: Thereis atypo on window Winabc.

— Do: Thereisatypo on window Winabc. The typo
results in an offensive word that will be seen by

everyone who uses the product.
N | -
- 5 NN

Impact CAN PIG RIDE?

e Example 2.

— Don't: Printing a zero length file causes the server
to crash.

— Do: Printing a zero length file causes the server to
crash. This condition may happen frequently. For

example, some customers inadvertently attempt to
print graphics files with text drivers.

Debug CAN PIG RIDE?

 \What will the developer need to debug this
problem?

— Traces
Dumps
| 0gS

nput Files
— Output Files

Evidence CAN PIG RIDE?

 What will prove the existence of the error?
— Expected results
— Specifications
— Designs
— User guides

— Customer Expectations

CAN PIG RIDE?

e Condense
* Accurate
* Neutralize
e Precise

* |solate

#* Generalize
Re-create
mpact
Debug

e Evidence

Using a Defect Template

Product Detalls:

System Detalls:

Brief Summary of Problem:
Problem Description:

s the problem re-creatable?

_Ist the exact steps/conditions to reproduce;

f not reproducible give additional information:
solated?

Generalized?

Debug | nformation:

Defect Abstract - Why?

May be the only thing read
“First Impression”

Printed in most reports

Used by most decision makers

Used by developers, project managers, others

Defect Abstract - What?

Summarize - very concise abstract is key
Explain what iswrong, what environment, impact

Who, what, when, why, where, how
Use meaningful keywords

Abbreviate, if possible and clear

Be aware of space limitations and use space
wisely

Defect Abstract - Technigues

Don't use default “first line of remarks”
Don't truncate

Rewrite to fit size limitations

Put most important words first

Abstract Examples

Lpd falls job submission to printer destination

|pdmap.txt doesn’t update on install, causes |pd
fallures

Problems found when saving and restoring data
member

XYZ' s savelrestore of data member on WINNT
fails, data corrupted.

Abstract Examples

The SNMP portion of the server (including

Product won’t build- java upgrade inconsistencies
oNn SrVr.

Beta Printer performance poor printing multiple
copies

Can't run printer XYZ at rated speed w/multi
copies

Writing Effective Defect Reports

Kelly Whitmill
IBM Printing Systems Division
6300 Diagonal Highway
003G
Boulder, Colorado 80301
(303) 924-9145
whitmill @us.ibm.com

Writing Effective Defect Reports

Introduction

Defect reports are among the most important deliverables to come out of test. They are asimportant as
the test plan and will have more impact on the qudity of the product than most other deliverables from
tedt. It isworth the effort to learn how to write effective defect reports. Effective defect reports will:

* Reduce the number of defects returned from devel opment

* Improve the speed of getting defect fixes

* Improvethe credibility of test

* Enhance teamwork between test and devel opment

Why do some testers get amuch better response from development than others? Part of the answer lies
in the defect report. Following afew smple rules can smooth the way for a much more productive
environment. The objective is not to write the perfect defect report, but to write an effective defect
report that conveys the proper message, gets the job done, and smplifies the process for everyone.

This paper focuses on two aspects of defect reports, 1) the remarks or description and 2) the abstract.
Fird, letstake alook at the essentials for writing effective remarks.

Defect Remarks

Here are some key points to make sure the next defect report you write is an effective one.
Condense - Say it clearly but briefly

Accurate - Isit adefect or could it be user error, misunderstanding, €tc.?

Neutrdize - Just the facts. No zingers. No humor. No emation.

Precise - Explicitly, what is the problem?

| solate - What has been done to isolate the problem?

Generdize - What has been done to understand how genera the problem is?

: Re-create - What are the essentidsin triggering/re-creating this problem? (environment, steps,
conditions)

8. I mpact - What is the impact to the customer? What is the impact to test? Sdll the defect.
0. Debug - What does development need to make it easier to debug? (traces, dumps, logs,
immediate access, €c.)

10. Evidence - What documentation will prove the existence of the error?

NoaswWDdDPRE

It isnot just good technical writing skills that leads to effective defect reports. It is more important to
make sure that you have asked and answered the right questions. It is key to make sure that you have
covered the essentid itemsthat will be of most benefit to the intended audience of the defect report.

Essentials for Effective Defect Remarks

Condense

Say it clearly but briefly. First, eiminate unnecessary wordiness. Second, don’t add in extraneous
information. It isimportant that you include al reevant information, but make sure that the information is
relevant. In Stuations where it is unclear how to reproduce the problem or the understanding of the
problem is vague for whatever reason you will probably need to cgpture more information. Keepin
mind that irrdlevant information can be just as problematic as too little rlevant information.

Condense Example Defect Remark

Don't: | was setting up atest whose redl intent was to
Suffersfrom TMI (Too Much Information), most | detect memory errors. In the process | noticed a
of whichisnot hdpful. new GUI fied that | was not familiar with. |

decided to exercise the new fidld. | tried many
boundary and error conditions that worked just
fine. Findly, | cleared the fidd of any dataand
attempted to advance to the next screen, then the
program abended. Severa retries reveaed that
anytime there is not any data for the "product
description” field you cannot advance to the next
screen or even exit or cancel without abending.
Do: The"exit", "next", and "cancd" functions for the
"Product Information” screen abends when the
"product description” field is empty or blank.

Accurate

Make sure that what you are reporting isredly abug. You can lose credibility very quickly if you get a
reputation of reporting problems that turn out to be setup problems, user errors, or misunderstandings of
the product. Before you write up the problem, make sure that you have done your homework. Before
writing up the problem consider:

* |Isthere something in the setup that could have caused this? For example, are the correct versons
ingaled and al dependencies met? Did you use the correct login, security, command/task sequence and
S0 fourth?

e Could an incomplete cleanup, incomplete results, or manua interventions from a previous test cause
this?

* Could this be the result of a network or some other environmenta problem?

* Do you redly understand how thisis supposed to work?

There are dways numerous influences that can affect the outcome of atest. Make sure that you
understand what these influences are and consider their role in the perceived bug you are reporting. This
isone areathat quickly separates the experienced tester from the novice. If you are unsure about the
vaidity of the problem it may be wise to consult with an experienced tester or developer prior to writing
up the problem.

Asarule of thumb it helps to remember the adage that “it isa 9n to over report, but it isacrime to
under report.” Don't be afraid to write up problems. Do your best to ensure that they are vaid
problems. When you discover that you have opened a problem and it turns out to be an incorrectly
reported problem, make sure that you learn fromiit.

Neutralize

State the problem objectively. Don't try to use humor and don’'t use emotiondly charged zingers. What
you think is funny when you write the defect may not be interpreted as funny by a developer who is
working overtime and is stressed by deadlines. Using emotiondly charged statements doesn’'t do
anything for fixing the problem. Emotiona statementsjust creete barriers to communication and
teamwork. Even if the developers doubted you and returned your previous defect and now you have
proof that you are correct and they are wrong, just state the problem and the additional information that
will be hdpful to the developer. Inthelong run this added bit of professondism will gain you respect
and credibility. Read over your problem description before submitting it and remove or restate those
comments that could be interpreted as being negative towards a person.

Neutrdize Example: Defect Remark

This exampleis aresponse to a devel oper

returning a defect for more information and

requesting more details on what values caused

the problem.

Don't: As could have been determined from the origina

Thefirst clause will probably beinterpreted asa | defect with very little effort, function ABC does

jab at the devel oper and adds no useful indeed abend with any negative vaue as input.

information.

Do: Function ABC abends with any negative vaue.
Examples of some values tested include -1, -36,
-32767.

Precise

The person reading the problem description should not have to be a detective to determine what the
problem is. Right up front in the description, describe exactly what you percaive the problem to be.
Some descriptions detail a series of actions and results. For example, “1 hit the enter key and action A
happened. Then | hit the back arrow and action B happened. Then | entered the “xyz’ command and
action C happened.” The reader may not know if you think al three resulting actions were incorrect, or
which one, if any isincorrect. In dl cases, but epecidly if the description is long, you need to
summarize the problem(s) at the beginning of the description. Don't depend on an abgtract in a different
field of the defect report to be available or used by everyone who reads the problem description. Don't
assume that others will draw the same conclusions that you do. Y our god is not to write a description
that is possible to understand, but to write a description that cannot be misunderstood. The only way to
make that happen isto explicitly and precisaly describe the problem rather than just giving a description
of what happened.

Precise Example Defect Remark

Don't: Issuing a cancd print when jobisin PRT date
Inthisexample, itishard to tell if the problemis | (job isdready in the printer and AS400 is

1) the twinax port not timing out or 2) the printer | waiting to receive print complete from printer)
not returning to ready or 3) the message on the causes the Twinax port to not time out. The
op pandl. printer never returnsto a READY date and
indefinitely displays "PRINTING IPDS FROM
TRAY1" in the op-pand.

Do: Cancding ajob whileit is printing causes the
Precede the description with ashort summary of | printer to hang.
exactly what you perceive the problem to be. Issuing a cancd print when jobisin PRT Sate

(job isdready in the printer and AS400 is
waiting to receive print complete from printer)
causes the Twinax port to not time out. The
printer never returnsto aREADY date and
indefinitely displays "PRINTING IPDS FROM
TRAY 1" in the op-pand.

| solate

Each organization hasits own philosophy and expectations on how much the tester is required to isolate
the problem. Regardliess of what is required, a tester should aways invest some reasonable amount of
effort into isolating the problem. Congder the following when isolating problems.

e Try tofind the shortest, Smplest set of the steps required to reproduce the problem. That usudly
goes along way towards isolating the problem.

* Ask yoursdf if anything externa to the specific code being tested contributed to the problem. For
example, if you experience a hang or delay, could it have been due to a network problem? If you are
doing end-to-end testing can you tell which component dong the way had the fallure? Are there some
things you could do to help narrow down which component had the failure?

* If your test has multiple input conditions, vary the inputs until you can find which one with which
vaues triggered the problem.

In the problem description, to the extent possible, describe the exact inputs used. For example, if you
found a problem while printing a Postscript document, even if you think the problem occurs with any
Postscript document, specify the exact document that you used to find the problem.

Your ahility to isolate, in large part, defines your value-add as atester. Effective isolation saves
everyone dong the line agreet ded of time. It dso savesyou alot of time when you have to verify afix.

Generalize
Often times, the developers will fix exactly what you report, without even redizing the problem isamore
generd problem that needs a more generd fix. For example, | may report that my word processor

“savefile’ function failed and the word processor abended when | tried to save thefile “myfile’. A little
more investigation may have reveded that this same failure occurs anytime | save a zero length file.
Perhaps, on this release it abends on every saveto aremote disk, aread only disk, and so forth. To
dready know this when you write the report will save the developer alot of time and enhance the
possibility of a better fix to handle the generd case.

When you detect a problem, take reasonable stepsto determine if it is more generd than isimmediately
obvious.

Generdize Example Defect Remark

Don't: Error message for "file not found" error has
garbage characters for the file name.

Do: Error message for "file not found" error has

garbage characters for the file name. Every
message | tried that expected data to be inserted
in the message had the same problem.

Messages without inserts were okay.

Re-create

Some bugs are easy to re-create and some are not. If you can re-create the bug you should explain
exactly what isrequired to do the re-create. Y ou should ligt al the steps, include the exact syntax, file
names, sequences that you used to encounter or re-create the problem. If you believe that the problem
will happen with any file, any sequence, etc. then mention that but till provide an explicit example that
can be used to do the re-create. If in your effort to verify that the bug is re-creatable you find a shorter
and reliable means of re-creating, document the shortest, easiest means of re-crestion.

If you cannot re-create the problem or if you suspect that you may not be able to re-creste the problem
gather dl the relevant information that you can that may provide useful information to the person who
has to try and fix the problem. This may be atime when you consider asking a developer if they want to
examine the sygem while it is il in the problem gtate or if there is any particular information that should
be captured before cleaning up the problem state and restoring the system. Don't assume that it can be
re-created if you haven't verified that it can be re-created. If you cannot or have not re-created the
problem it isimportant to note that in the defect remarks.

I mpact

What isthe impact if the bug were to surface in the customer environment? Theimpact of some bugsis
sdf-evident. For example,” entire system crashes when | hit the enter key.” Some bugs are not so
obvious. For example, you may discover atypo on awindow. This may seem very minor, even trivid
unless you point out that every time someone uses your product thisis the firgt thing they see and the
typo results in an offensive word. In this case, even though it isjust atypo it may be something that
absolutely must be fixed prior to shipping the product. Make your best judgment. If you think it is
possible that this defect will not get sufficient priority then state the potentia impact and sdll the defect.
Don't oversdl, but make sure the readers of the defect have an accurate understanding of the probable
impact on the customer.

Debug

What will the developer need to be able to debug this problem? Are there traces, dumps, logs, and so
forth that should be captured and made available with this defect report? Document what has been
captured and how it can be accessed.

Evidence

What exigts that will prove the existence of the error? Have you provided both the expected results and
the actual results? Is there documentation that supports your expected results? Since you are writing a
problem report it is obvious thet you believe there is a problem. Provide anything you can that will
convince others <o that thisis indeed a valid problem. Evidence may take the form of documentation
from user guides, specifications, requirements, and designs. It may be past comments from customers,
de-facto standards from competing products, or results from previous versions of the product. Don't
assume everyone sees things the same way you do. Don't expect people to read between the lines and
draw the same conclusions as you. Don't assume that 3 weeks from now you will remember why you
thought this was a bug. Think about what it is that convinced you thet thisis a bug and include that in the
report. Y ou will have to provide even more evidence if you think there is a chance that this Stuation may
not be readily accepted by dl asavalid bug.

Mental Checklist

You won't be able to go back and study this paper each time you write a defect report. It isimportant
that you develop an easily accessible mentd checklist that you go over in your mind each time you write
adefect report. Ingpections have proven to be the least expensive and most effective means of
improving software qudity. It stands to reason, that the least expensive most effective means of
improving the quality of your defect reportsis an ingpection, even if it isan informal sdf-ingpection. It is
important that usng whatever memory techniques work for you that these checklist items get implanted
into your memory. In most cases, inadequate defect reports are not due to an inability to write a good
report. Usudly, we just didn’t think about and answer the right questions. This mental checklist takes us
through the process of thinking about and answering the right questions.

You may find it useful to apply amnemonic to the checklid. If you look at the first letter of each item on
the checkligt it spells CAN PIG RIDE? Thisisjust short enough and obnoxious enough that hopefully it
will gtick with you. If you spend about 20-30 minutes using this phrase and associating it with the defect
ingpection checkligt, you will probably have that menta checklist implanted in your memory. If ten items
are too much to remember, then concentrate on PIG. If you do a good job on these three items,

Precise, Isolate, and Generdize it will guide you to adequate and more effective defect reports in most
Cases.

Template

A defect remark template can prove useful in making sure that the remarks provide the correct
information and answer the right questions. Some defect tracking tools may dlow atemplate to

automatically be displayed whenever it prompts for defect remarks. Otherwise, you may have to use cut
and paste to insert atemplate into your remarks. A sample template follows.

Product Details:
Product Name and Number:
Verson, Revison, build and disk number:

Sysem Detalls.
Computer Type: PC modd, mainframe type, OS
Levd, etc.
Memory:
Disk Space:
Peripherals attached and used:
Network connectivity:
Configuration Detalls

Problem Summary:

Problem Description: (include expected and actual results)

Is this reproducible?

Steps and conditions to reproduce:

Has this problem been isolated?
Has this problem been generdized?
Additiona Debug Information: (How to access logs, dumps, €tc.)

In effective defect reporting, asin many Stuations, it is not a matter of if you got the answers correct but
more ameatter of did you answer the correct questions? These ten points:

e Condense
e Accurate
* Neutrdize
* Precise

e |s0lae

e Gengdize
* Re-create
* |Impact

* Debug

e Evidence

Provide a quick checklist to ensure that your defect reports answer the right questions that will be of
maost benefit to your organization.

Defect Abstracts

The short one line abgtract that gets associated with most defectsis avery powerful communication
tool. Often times, the abstract is the only portion of the defect that gets read by the decison-makers. It
isthe abstract, not the full description, that gets included in reports. It isthe abstract that the project
managers, screeners, team leads and other managers ook at when trying to understand the defects
associated with the product.

The abstract must be concise and descriptive and convey an accurate message. The abstract is usudly
very limited in length. Because of the space limitations, abbreviations are okay and short accurate
messages take priority over good grammar. A good use of key wordsis essentia Since many searches
are based on the abstract. Keywords such as abend, hang, typo and so forth are both descriptive and
prove useful as search words. Where space permitsit is helpful to mention the environment, the impact,
and any of the who, what, when, where, why questions that you can addressin such a short space.

Some defect tracking tools provide default abstracts by using the first line of the problem description or
samilar defaulting mechanisms. Never take the default abstract. Be as specific as possble. For example,
the following abgtract is true but doesn't provide nearly as much informetion as it could.

Abstract: Problems found when saving and restoring data member.

Perhaps a more descriptive abstract would be:

Absract: xyzZ' s savelrestore of data member on WinNT fails, data corrupted

You can never get everything you want in an abstract. Hereisaligt of items and tips thet you try to
includein an abgiract.

Abstract Checklist

Mandatory:
1. Concisdly, explicitly state what the problemis. (not just thet there is a problem)

Recommended (space per mitting):

Use meaningful keywords

State environment and impact

Answer who, what, when, where, why, and how
Okay to use abbreviations

Grammar is secondary over conveying the message
Don't use defaults

oSk wpnE

Summary

Testers spend a significant amount of time seeking out and discovering software problems. Once
detected, it greatly enhances productivity to report the defect in such away as to increase the likelihood
of getting the problem fixed with the least amount of effort. Making sure that the proper information is
provided is more important than superior writing skills. The 10 topics described in this paper

* Condense

e Accurate
* Neutrdize
* Precise

* |solate

e Gengdize
* Re-create
* |Impact

* Debug

e Evidence

will go along way toward help you provide the right information in every defect report.

Not everyone reads the entire defect report. Many decision-makers rely on the one-line defect abstract
to base their decisons on. It isimportant to write abstracts that accurately convey the right message
about the abstract.

The better you are a writing defect reports and abstracts, the more likely it is that the problems will
actudly get fixed and in amore timely manner. Y our credibility and vaue-add to the business will
increase as devel opers, managers, and other testers are better able to do their jobs because your defect
reports are will written and religble.

Condense
Accurate

Neutrdize

Precise
| solate

Genedize

Recreate
| mpact
Debug

Evidence

Appendix A
(say it dearly but briefly)

(Isit redly adefect? Could it be user error, setup problem etc.?)

(Just the facts, no zingers, no humor, no emation)

(Explicitly what is the problem?)
(What has been done to isolate the problem?)

(What has been done to understand how generd the problem is?)

(What are the essentids in cregting/triggering this problem?)
(What isthe impact if the bug were to surface in customer env.?)
(What does the developer need to debug this?)

(What will prove the existence of the error? documentation?)

10

References:

Rex Black, The Fine Art of Writing a Good Bug Report, http:/Aww.rexblack.consulting.com

11

	COVER PAGE
	BIO
	PRESENTATION
	SUPPLEMENTAL MATERIALS

