
P R E S E N T A T I O N
BIO
PRESENTATION
SUPPLEMENTAL MATERIALS

International Conference On
Software Testing Analysis & Review

May 13- May 17, 2002
Orlando, FL USA

T7

5/16/2002 11:30:00 AM

WRITING BETTER DEFECT

REPORTS

Kelly Whitmill
IBM

Kelly Whitmill

Kelly Whitmill has over 18 years experience in software testing. Most of that time his role has
been that of a team lead with responsibility for finding and implementing effective methods and
tools to accomplish the required tests. He is particularly interested in practical approaches that
can be effective in environments with limited resources. He has a strong interest in test
automation. He has worked in both small and large company environments. He has worked on
PC-based, Unix-based, and Mainframe-based projects. He currently works for the IBM Printing
Systems Division in Boulder, Colorado.

Writing Effective Defect Reports
Kelly Whitmill

IBM Printing Systems Division
whitmill@us.ibm.com

2

Reasons to Write Effective Defects

• Reduce the number of defects returned
• Improve the speed of getting defects fixed
• Improve the credibility of test
• Enhance teamwork
• Improve product quality

Defect reports may be our most important
deliverable

3

Focus
of this
Presentation

Defect Fields

Abstract

Remark

4

Defect Remarks

• Condense
• Accurate
• Neutralize
• Precise
• Isolate
• Generalize
• Re-create
• Impact
• Debug
• Evidence

Can Pig Ride?

5

Condense CAN PIG RIDE?

• Say it clearly but briefly.
• Example 1: I was setting up a test whose real intent was to

detect memory errors. In the process I noticed a new GUI field
that I was not familiar with. I decided to exercise the new field. I
tried many boundary and error conditions that worked just fine.
Finally, I cleared the field of any data and attempted to advance to
the next window, then the program abended. Several retries
revealed that anytime there is not any data for the “product
description” field you cannot advance to the next window or even
exit or cancel without abending.

• Rewrite: The “exit”, “next”, and “cancel” functions for the
“Product Information” window abends when the “Product

Description” field is empty or blank.

6

Accurate CAN PIG RIDE?

• Is it a user error or setup problem?
• System problem?
• Application problem?
• Test case problem?
• Example 1:

– Reported Problem: Print server is unable to
connect to remote printer.

– Real Problem: Network was down

7

Accurate CAN PIG RIDE?

• Example 2:
– Reported Problem: lp -d pr1 #etc/motd hangs
– Real Problem: Syntax error caused command to

wait for user to type in input, which was never
provided.

8

Accurate CAN PIG RIDE?

• Example 3:
– Reported Problem: Remote query is unable to find

an existing printer. Local query can find the printer.
– Real Problem: Database corrupted from previous

test case. Remote clients can’t get data from
database.

9

Neutral CAN PIG RIDE?

• Neutral - Just the facts, no zingers, no humor,
no emotion, no sarcasm

• Example 1:
– Don’t: Though this is a very nice window and people

should enjoy the interaction and may even be saddened
when they have to leave this window. However, you
may want to consider providing some sort of exit from
this window.

– Do: There is no way to exit from this window.

10

Neutral CAN PIG RIDE?

• Example 2: Reopen a returned defect.
– Don’t: As could have been determined from the

original defect with very little effort, function ABC
does indeed abend with any negative value as
input.

– Do: Function ABC abends with any negative value.
Examples of some values tested include:
-1, -36, -32767

11

Precise CAN PIG RIDE?
• Explicitly, what is the problem?
• Don’t: Issuing a cancel print when job is in PRT state (job is

already in the printer and A/400 is waiting to receive print
complete from printer) causes the twinax port to not time out.
The printer never returns to a READY state and indefinitely
displays “PRINTING IPDS FROM TRAY 1” in the op-panel.

• Do:
Canceling a job while it is printing causes the printer to
hang.
Issuing a cancel print when job is in PRT state (job is already
in the printer and A/400 is waiting to receive print complete
from printer) causes the twinax port to not time out. The
printer never returns to a READY state and indefinitely

12

Isolate CAN PIG RIDE?
• What has been done to isolate the problem?
• Example 1: Printer hangs if a job is cancelled

while printing.
– Does it hang for all document types? PCL? PS?
– Does it hang for all document sizes? Small? Big?
– Does it matter when I cancel it? Start? Middle?

End?
– Are there traces or logs that add useful insight.

13

Isolate (continued) CAN PIG RIDE?
• Example 2: Web page link does not work.

– System OK? Network up?
– Link destination up and available?
– Setup, configuration, tools, test case ok?
– Firewall problem?
– Authorization problem?
– Automated tool problem?
– Does it work outside of the test case?
– Did previous test cases cause this problem?
– Problem with text link? Graphic link? Both?
– Which Browsers?

14

Generalize CAN PIG RIDE?
• What has been done to understand how general

the problem is?
• Example 1: Error message for “file not found”

error has garbage characters for the file name.
– Does every message that requires an insert have the

same problem?

15

Re-create CAN PIG RIDE?
• What is essential to re-create this problem?
• Re-creatable?
• Have you re-created it?
• What is the simplest, most reliable, set of steps to re-

create the problem? Be exact! No assumptions.
• Describe the environment/conditions
• If you cannot re-create

– Say so in the defect report
– Provide as much useful information as possible
– Consider asking experienced developer or tester

to examine the problem state.

16

Impact CAN PIG RIDE?
• What is the impact if the bug were to surface in

a customer environment?
• If needed, sell the defect
• Be accurate, don’t undersell, don’t oversell
• Example 1:

– Don’t: There is a typo on window Winabc.
– Do: There is a typo on window Winabc. The typo

results in an offensive word that will be seen by
everyone who uses the product.

17

Impact CAN PIG RIDE?
• Example 2:

– Don’t: Printing a zero length file causes the server
to crash.

– Do: Printing a zero length file causes the server to
crash. This condition may happen frequently. For
example, some customers inadvertently attempt to
print graphics files with text drivers.

18

Debug CAN PIG RIDE?
• What will the developer need to debug this

problem?
– Traces
– Dumps
– Logs
– Input Files
– Output Files

19

Evidence CAN PIG RIDE?
• What will prove the existence of the error?

– Expected results
– Specifications
– Designs
– User guides
– Customer Expectations

20

CAN PIG RIDE?
• Condense
�Accurate
• Neutralize
• Precise
� Isolate
�Generalize
�Re-create
• Impact
• Debug
• Evidence

21

Using a Defect Template
• Product Details:
• System Details:
• Brief Summary of Problem:
• Problem Description:
• Is the problem re-creatable?
• List the exact steps/conditions to reproduce:
• If not reproducible give additional information:
• Isolated?
• Generalized?
• Debug Information:

22

Defect Abstract - Why?
• May be the only thing read
• “First Impression”
• Printed in most reports
• Used by most decision makers
• Used by developers, project managers, others

23

Defect Abstract - What?
• Summarize - very concise abstract is key
• Explain what is wrong, what environment, impact
• Who, what, when, why, where, how
• Use meaningful keywords
• Abbreviate, if possible and clear
• Be aware of space limitations and use space

wisely

24

Defect Abstract - Techniques
• Don’t use default “first line of remarks”
• Don’t truncate
• Rewrite to fit size limitations
• Put most important words first

25

Abstract Examples
• Lpd fails job submission to printer destination
• lpdmap.txt doesn’t update on install, causes lpd

failures
• Problems found when saving and restoring data

member
• XYZ’s save/restore of data member on WinNT

fails, data corrupted.

26

Abstract Examples
• The SNMP portion of the server (including
• Product won’t build- java upgrade inconsistencies

on srvr.
• Beta Printer performance poor printing multiple

copies
• Can’t run printer XYZ at rated speed w/multi

copies

Writing Effective Defect Reports

Kelly Whitmill
IBM Printing Systems Division

6300 Diagonal Highway
003G

Boulder, Colorado 80301
(303) 924-9145

whitmill@us.ibm.com

1

Writing Effective Defect Reports

Introduction
Defect reports are among the most important deliverables to come out of test. They are as important as
the test plan and will have more impact on the quality of the product than most other deliverables from
test. It is worth the effort to learn how to write effective defect reports. Effective defect reports will:
� Reduce the number of defects returned from development
� Improve the speed of getting defect fixes
� Improve the credibility of test
� Enhance teamwork between test and development

Why do some testers get a much better response from development than others? Part of the answer lies
in the defect report. Following a few simple rules can smooth the way for a much more productive
environment. The objective is not to write the perfect defect report, but to write an effective defect
report that conveys the proper message, gets the job done, and simplifies the process for everyone.

This paper focuses on two aspects of defect reports, 1) the remarks or description and 2) the abstract.
First, lets take a look at the essentials for writing effective remarks.

Defect Remarks

Here are some key points to make sure the next defect report you write is an effective one.
1. Condense - Say it clearly but briefly
2. Accurate - Is it a defect or could it be user error, misunderstanding, etc.?
3. Neutralize - Just the facts. No zingers. No humor. No emotion.
4. Precise - Explicitly, what is the problem?
5. Isolate - What has been done to isolate the problem?
6. Generalize - What has been done to understand how general the problem is?
7. Re-create - What are the essentials in triggering/re-creating this problem? (environment, steps,
conditions)
8. Impact - What is the impact to the customer? What is the impact to test? Sell the defect.
9. Debug - What does development need to make it easier to debug? (traces, dumps, logs,
immediate access, etc.)
10. Evidence - What documentation will prove the existence of the error?

It is not just good technical writing skills that leads to effective defect reports. It is more important to
make sure that you have asked and answered the right questions. It is key to make sure that you have
covered the essential items that will be of most benefit to the intended audience of the defect report.

Essentials for Effective Defect Remarks

2

Condense
Say it clearly but briefly. First, eliminate unnecessary wordiness. Second, don’t add in extraneous
information. It is important that you include all relevant information, but make sure that the information is
relevant. In situations where it is unclear how to reproduce the problem or the understanding of the
problem is vague for whatever reason you will probably need to capture more information. Keep in
mind that irrelevant information can be just as problematic as too little relevant information.

Condense Example Defect Remark
Don’t:
Suffers from TMI (Too Much Information), most
of which is not helpful.

I was setting up a test whose real intent was to
detect memory errors. In the process I noticed a
new GUI field that I was not familiar with. I
decided to exercise the new field. I tried many
boundary and error conditions that worked just
fine. Finally, I cleared the field of any data and
attempted to advance to the next screen, then the
program abended. Several retries revealed that
anytime there is not any data for the "product
description" field you cannot advance to the next
screen or even exit or cancel without abending.

Do: The "exit", "next", and "cancel" functions for the
"Product Information" screen abends when the
"product description" field is empty or blank.

Accurate
Make sure that what you are reporting is really a bug. You can lose credibility very quickly if you get a
reputation of reporting problems that turn out to be setup problems, user errors, or misunderstandings of
the product. Before you write up the problem, make sure that you have done your homework. Before
writing up the problem consider:
� Is there something in the setup that could have caused this? For example, are the correct versions
installed and all dependencies met? Did you use the correct login, security, command/task sequence and
so fourth?
� Could an incomplete cleanup, incomplete results, or manual interventions from a previous test cause
this?
� Could this be the result of a network or some other environmental problem?
� Do you really understand how this is supposed to work?

There are always numerous influences that can affect the outcome of a test. Make sure that you
understand what these influences are and consider their role in the perceived bug you are reporting. This
is one area that quickly separates the experienced tester from the novice. If you are unsure about the
validity of the problem it may be wise to consult with an experienced tester or developer prior to writing
up the problem.

3

As a rule of thumb it helps to remember the adage that “it is a sin to over report, but it is a crime to
under report.” Don’t be afraid to write up problems. Do your best to ensure that they are valid
problems. When you discover that you have opened a problem and it turns out to be an incorrectly
reported problem, make sure that you learn from it.

Neutralize
State the problem objectively. Don’t try to use humor and don’t use emotionally charged zingers. What
you think is funny when you write the defect may not be interpreted as funny by a developer who is
working overtime and is stressed by deadlines. Using emotionally charged statements doesn’t do
anything for fixing the problem. Emotional statements just create barriers to communication and
teamwork. Even if the developers doubted you and returned your previous defect and now you have
proof that you are correct and they are wrong, just state the problem and the additional information that
will be helpful to the developer. In the long run this added bit of professionalism will gain you respect
and credibility. Read over your problem description before submitting it and remove or restate those
comments that could be interpreted as being negative towards a person.

Neutralize Example:
This example is a response to a developer
returning a defect for more information and
requesting more details on what values caused
the problem.

Defect Remark

Don’t:
The first clause will probably be interpreted as a
jab at the developer and adds no useful
information.

As could have been determined from the original
defect with very little effort, function ABC does
indeed abend with any negative value as input.

Do: Function ABC abends with any negative value.
Examples of some values tested include -1, -36,
-32767.

Precise
The person reading the problem description should not have to be a detective to determine what the
problem is. Right up front in the description, describe exactly what you perceive the problem to be.
Some descriptions detail a series of actions and results. For example, “I hit the enter key and action A
happened. Then I hit the back arrow and action B happened. Then I entered the “xyz” command and
action C happened.” The reader may not know if you think all three resulting actions were incorrect, or
which one, if any is incorrect. In all cases, but especially if the description is long, you need to
summarize the problem(s) at the beginning of the description. Don’t depend on an abstract in a different
field of the defect report to be available or used by everyone who reads the problem description. Don’t
assume that others will draw the same conclusions that you do. Your goal is not to write a description
that is possible to understand, but to write a description that cannot be misunderstood. The only way to
make that happen is to explicitly and precisely describe the problem rather than just giving a description
of what happened.

4

Precise Example Defect Remark
Don’t:
In this example, it is hard to tell if the problem is
1) the twinax port not timing out or 2) the printer
not returning to ready or 3) the message on the
op panel.

Issuing a cancel print when job is in PRT state
(job is already in the printer and AS/400 is
waiting to receive print complete from printer)
causes the Twinax port to not time out. The
printer never returns to a READY state and
indefinitely displays "PRINTING IPDS FROM
TRAY1" in the op-panel.

Do:
Precede the description with a short summary of
exactly what you perceive the problem to be.

Canceling a job while it is printing causes the
printer to hang.
Issuing a cancel print when job is in PRT state
(job is already in the printer and AS/400 is
waiting to receive print complete from printer)
causes the Twinax port to not time out. The
printer never returns to a READY state and
indefinitely displays "PRINTING IPDS FROM
TRAY1" in the op-panel.

Isolate
Each organization has its own philosophy and expectations on how much the tester is required to isolate
the problem. Regardless of what is required, a tester should always invest some reasonable amount of
effort into isolating the problem. Consider the following when isolating problems.
� Try to find the shortest, simplest set of the steps required to reproduce the problem. That usually
goes a long way towards isolating the problem.
� Ask yourself if anything external to the specific code being tested contributed to the problem. For
example, if you experience a hang or delay, could it have been due to a network problem? If you are
doing end-to-end testing can you tell which component along the way had the failure? Are there some
things you could do to help narrow down which component had the failure?
� If your test has multiple input conditions, vary the inputs until you can find which one with which
values triggered the problem.

In the problem description, to the extent possible, describe the exact inputs used. For example, if you
found a problem while printing a Postscript document, even if you think the problem occurs with any
Postscript document, specify the exact document that you used to find the problem.
Your ability to isolate, in large part, defines your value-add as a tester. Effective isolation saves
everyone along the line a great deal of time. It also saves you a lot of time when you have to verify a fix.

Generalize
Often times, the developers will fix exactly what you report, without even realizing the problem is a more
general problem that needs a more general fix. For example, I may report that my word processor

5

“save file” function failed and the word processor abended when I tried to save the file “myfile”. A little
more investigation may have revealed that this same failure occurs anytime I save a zero length file.
Perhaps, on this release it abends on every save to a remote disk, a read only disk, and so forth. To
already know this when you write the report will save the developer a lot of time and enhance the
possibility of a better fix to handle the general case.
When you detect a problem, take reasonable steps to determine if it is more general than is immediately
obvious.
Generalize Example Defect Remark
Don’t: Error message for "file not found" error has

garbage characters for the file name.
Do: Error message for "file not found" error has

garbage characters for the file name. Every
message I tried that expected data to be inserted
in the message had the same problem.
Messages without inserts were okay.

Re-create
Some bugs are easy to re-create and some are not. If you can re-create the bug you should explain
exactly what is required to do the re-create. You should list all the steps, include the exact syntax, file
names, sequences that you used to encounter or re-create the problem. If you believe that the problem
will happen with any file, any sequence, etc. then mention that but still provide an explicit example that
can be used to do the re-create. If in your effort to verify that the bug is re-creatable you find a shorter
and reliable means of re-creating, document the shortest, easiest means of re-creation.

If you cannot re-create the problem or if you suspect that you may not be able to re-create the problem
gather all the relevant information that you can that may provide useful information to the person who
has to try and fix the problem. This may be a time when you consider asking a developer if they want to
examine the system while it is still in the problem state or if there is any particular information that should
be captured before cleaning up the problem state and restoring the system. Don’t assume that it can be
re-created if you haven’t verified that it can be re-created. If you cannot or have not re-created the
problem it is important to note that in the defect remarks.

Impact
What is the impact if the bug were to surface in the customer environment? The impact of some bugs is
self-evident. For example,” entire system crashes when I hit the enter key.” Some bugs are not so
obvious. For example, you may discover a typo on a window. This may seem very minor, even trivial
unless you point out that every time someone uses your product this is the first thing they see and the
typo results in an offensive word. In this case, even though it is just a typo it may be something that
absolutely must be fixed prior to shipping the product. Make your best judgment. If you think it is
possible that this defect will not get sufficient priority then state the potential impact and sell the defect.
Don’t oversell, but make sure the readers of the defect have an accurate understanding of the probable
impact on the customer.

6

Debug
What will the developer need to be able to debug this problem? Are there traces, dumps, logs, and so
forth that should be captured and made available with this defect report? Document what has been
captured and how it can be accessed.

Evidence
What exists that will prove the existence of the error? Have you provided both the expected results and
the actual results? Is there documentation that supports your expected results? Since you are writing a
problem report it is obvious that you believe there is a problem. Provide anything you can that will
convince others also that this is indeed a valid problem. Evidence may take the form of documentation
from user guides, specifications, requirements, and designs. It may be past comments from customers,
de-facto standards from competing products, or results from previous versions of the product. Don’t
assume everyone sees things the same way you do. Don’t expect people to read between the lines and
draw the same conclusions as you. Don’t assume that 3 weeks from now you will remember why you
thought this was a bug. Think about what it is that convinced you that this is a bug and include that in the
report. You will have to provide even more evidence if you think there is a chance that this situation may
not be readily accepted by all as a valid bug.

Mental Checklist
You won’t be able to go back and study this paper each time you write a defect report. It is important
that you develop an easily accessible mental checklist that you go over in your mind each time you write
a defect report. Inspections have proven to be the least expensive and most effective means of
improving software quality. It stands to reason, that the least expensive most effective means of
improving the quality of your defect reports is an inspection, even if it is an informal self-inspection. It is
important that using whatever memory techniques work for you that these checklist items get implanted
into your memory. In most cases, inadequate defect reports are not due to an inability to write a good
report. Usually, we just didn’t think about and answer the right questions. This mental checklist takes us
through the process of thinking about and answering the right questions.

You may find it useful to apply a mnemonic to the checklist. If you look at the first letter of each item on
the checklist it spells CAN PIG RIDE? This is just short enough and obnoxious enough that hopefully it
will stick with you. If you spend about 20-30 minutes using this phrase and associating it with the defect
inspection checklist, you will probably have that mental checklist implanted in your memory. If ten items
are too much to remember, then concentrate on PIG. If you do a good job on these three items,
Precise, Isolate, and Generalize it will guide you to adequate and more effective defect reports in most
cases.
Template
A defect remark template can prove useful in making sure that the remarks provide the correct
information and answer the right questions. Some defect tracking tools may allow a template to

7

automatically be displayed whenever it prompts for defect remarks. Otherwise, you may have to use cut
and paste to insert a template into your remarks. A sample template follows.

Product Details:
Product Name and Number:
Version, Revision, build and disk number:

System Details:
Computer Type: PC model, mainframe type, OS
Level, etc.
Memory:
Disk Space:
Peripherals attached and used:
Network connectivity:
Configuration Details:

Problem Summary:

Problem Description: (include expected and actual results)

Is this reproducible?

Steps and conditions to reproduce:

Has this problem been isolated?
Has this problem been generalized?
Additional Debug Information: (How to access logs, dumps, etc.)

8

In effective defect reporting, as in many situations, it is not a matter of if you got the answers correct but
more a matter of did you answer the correct questions? These ten points:
� Condense
� Accurate
� Neutralize
� Precise
� Isolate
� Generalize
� Re-create
� Impact
� Debug
� Evidence
Provide a quick checklist to ensure that your defect reports answer the right questions that will be of
most benefit to your organization.

Defect Abstracts
The short one line abstract that gets associated with most defects is a very powerful communication
tool. Often times, the abstract is the only portion of the defect that gets read by the decision-makers. It
is the abstract, not the full description, that gets included in reports. It is the abstract that the project
managers, screeners, team leads and other managers look at when trying to understand the defects
associated with the product.

The abstract must be concise and descriptive and convey an accurate message. The abstract is usually
very limited in length. Because of the space limitations, abbreviations are okay and short accurate
messages take priority over good grammar. A good use of key words is essential since many searches
are based on the abstract. Keywords such as abend, hang, typo and so forth are both descriptive and
prove useful as search words. Where space permits it is helpful to mention the environment, the impact,
and any of the who, what, when, where, why questions that you can address in such a short space.

Some defect tracking tools provide default abstracts by using the first line of the problem description or
similar defaulting mechanisms. Never take the default abstract. Be as specific as possible. For example,
the following abstract is true but doesn’t provide nearly as much information as it could.

Abstract: Problems found when saving and restoring data member.

Perhaps a more descriptive abstract would be:

Abstract: xyz’s save/restore of data member on WinNT fails, data corrupted

You can never get everything you want in an abstract. Here is a list of items and tips that you try to
include in an abstract.

9

Abstract Checklist

Mandatory:
1. Concisely, explicitly state what the problem is. (not just that there is a problem)

 Recommended (space permitting):
1. Use meaningful keywords
2. State environment and impact
3. Answer who, what, when, where, why, and how
4. Okay to use abbreviations
5. Grammar is secondary over conveying the message
6. Don’t use defaults

Summary
 Testers spend a significant amount of time seeking out and discovering software problems. Once
detected, it greatly enhances productivity to report the defect in such a way as to increase the likelihood
of getting the problem fixed with the least amount of effort. Making sure that the proper information is
provided is more important than superior writing skills. The 10 topics described in this paper
� Condense
� Accurate
� Neutralize
� Precise
� Isolate
� Generalize
� Re-create
� Impact
� Debug
� Evidence
 will go a long way toward help you provide the right information in every defect report.

 Not everyone reads the entire defect report. Many decision-makers rely on the one-line defect abstract
to base their decisions on. It is important to write abstracts that accurately convey the right message
about the abstract.

 The better you are at writing defect reports and abstracts, the more likely it is that the problems will
actually get fixed and in a more timely manner. Your credibility and value-add to the business will
increase as developers, managers, and other testers are better able to do their jobs because your defect
reports are will written and reliable.

10

 Appendix A
 Condense (say it clearly but briefly)

 Accurate (Is it really a defect? Could it be user error, setup problem etc.?)

 Neutralize (Just the facts, no zingers, no humor, no emotion)

 Precise (Explicitly what is the problem?)

 Isolate (What has been done to isolate the problem?)

 Generalize (What has been done to understand how general the problem is?)

 Re-create (What are the essentials in creating/triggering this problem?)

 Impact (What is the impact if the bug were to surface in customer env.?)

 Debug (What does the developer need to debug this?)

 Evidence (What will prove the existence of the error? documentation?)

11

 References:

 Rex Black, The Fine Art of Writing a Good Bug Report, http://www.rexblack.consulting.com

	COVER PAGE
	BIO
	PRESENTATION
	SUPPLEMENTAL MATERIALS

