
1

Managing BDD
Test Case Management for BDD Automation

2

Agenda

• Brief Gherkin Walkthrough

• Technical Challenges

• Adopted Process and Workflow

• Gherkin Builder

• Implementation

3

Gherkin

4

What is Gherkin

• It is a Business Readable, Domain Specific Language that lets you
describe software's behaviour without detailing how that
behaviour is implemented

• Gherkin serves two purposes: documentation and automated tests
• A bonus feature: notifies you of unimplemented test steps, with

suggestions
• Gherkin's grammar is defined in the Treetop grammar that is part

of the Cucumber codebase

5

Gherkin Syntax

• Gherkin is a line-oriented language that uses indentation to define
structure

• Line endings terminate statements (eg, steps)
• Either spaces or tabs may be used for indentation
• Most lines start with a keyword
• Comment lines are allowed anywhere in the file

• They begin with zero or more spaces, followed by a hash sign (#) and
some amount of text

• A parser divides the input into features, scenarios and steps
• When you run the feature the trailing portion (after the keyword) of

each step is matched to a code block called Step Definitions

6

Gherkin Composition

• A Feature is a set of functionality
• A single Feature is has its own file (ending in .feature)
• Features are typically composed of multiple Scenarios

• A Scenario is a block of statements that describe some desired
behavior
• Scenarios specify What and should avoid answering the question How
• A Scenario Outline is a block of statements (Scenario) that gets repeated

over a set of data
• An Example table specifies input parameter data to allow reuse of test steps

• Background Steps may run before each Scenario to reduce
redundancy in the Scenarios that make up the Feature

7

Gherkin Composition

• A Scenario (test) consists of three parts:
• Given

• The preconditions of the system under test
• The setup of the systems state if you want

• When
• The actual change of the system
• Transforming it from the initial state to the final state

• Then
• The expected final state of the system
• The verification that the state change was the desired change

8

GWT Example

Given I have a new user who has completed basics

And I am logged in

When I access the dashboard

Then I validate lifestyle button unlocked

9

Given

• The purpose of givens is to put the system in a known state before
the user (or external system) starts interacting with the system (in
the When steps)

• Avoid talking about user interaction in givens
• If you were creating use cases, Givens would be your

preconditions

Examples:

• Given I have a new registered user
• Given I am logged in

Bad Example:

• Given I login

10

When

• The purpose of When steps is to describe the key action the user
performs

• Scenarios should limit the usage of Whens to four or five steps
• Look at testing and/or exercising one particular area of code to avoid

cascading failures

Examples:

• When the state "California" is selected
• When I login
• When I click on the site pairing form
• When I fill out the overall health form to womens health

11

Then

• The purpose of Then steps is to observe outcomes
• The observations should be related to the business value/benefit

in your feature description
• The observations should also be on some kind of output

• Something that comes out of the system (report, user interface,
message)

• Not something that is deeply buried inside it (that has no business value)

Examples:

• Then I see the email error of "Please enter a valid email address"
• Then I see the consent form
• Then I can re-run the refresher consent form

12

Gherkin Example
@Feature_AC-21362 @dashboard @pmi @subscriber
Feature: Dashboard
 As a user
 I want to have access to the dashboard
 So that I can see and fill out forms

 @AC-21422 @unlock-forms
 Scenario: Lifestyle and Overall Forms section appearance changes in Dashboard upon completing Basics
 Given I have a new user who has completed basics
 When I login
 When I access the dashboard
 Then I validate lifestyle button unlocked
 Then I validate overall button unlocked

 @AC-21491 @complete-forms
 Scenario Outline: Completing a form shows as completed
 Given I have a new user who has completed "<form>"
 When I login
 When I access the dashboard
 Then the <form> form will show as completed

 Examples:
 |form|
 |basic|
 |overall|
 |lifestyle|
 |ehr|

13

Technical Challenges

14

Technical Challenges

• Distributed team with different skill sets all ‘want to’ write tests
• Test cases still require source control
• Need one source of truth
• Growing test step library can quickly become unwieldy
• No common supporting tooling

15

Process & Workflow

16

Storage

• All test cases stored in GIT
• Source of truth

• Features are represented as Epics in JIRA
• A unique tag exists for each feature representing JIRA epic key

• Scenarios are represented as Tests in JIRA
• A unique tag exists for each scenario representing JIRA test key

• Every time a test case is executed with the JIRA flag, JIRA is
updated
• All test information is updated, including title, steps, and links
• A test cycle is generated which records status of test execution

17

Problem

• Git is a technical tool
• How can we support non-technical people writing tests
• How can non-technical people easily edit tests

Automated Tests are code - and need to be treated as such

18

Gherkin Builder

19

Gherkin Builder

• Gherkin test steps quickly grow

• The un-initiated often don’t know what steps exist

• Easy for similar/repetitive steps to appear in ‘code base’

• Few good non-technical tools for managing Gherkin steps

20

Gherkin Builder

• Provides simple structuring and auto-completion for writing
Gherkin tests

• Suggests test steps based on already implemented test steps
• Also suggests tags based on existing tagging

• Write a Scenario and easily turn it into a Scenario Outline
• JIRA integration

• Create a new Feature, or add tests to an existing Feature in JIRA
• Create links between JIRA dev stories and tests
• Exports tests directly into Zephyr

• External Tooling support
• Provides ability to link execution or other capabilities to tools such as

Jenkins

21

Demo

22

Implementation

23

Writing Tests

IDE

• Write the tests using autocomplete available in IDEs
• Create empty JIRA test and capture issue key
• Add issue key as tag to Gherkin test case
• Add JIRA links using @tests-XX-XXXX format
• Commit using typical git workflows

Gherkin Builder

• Write test case using hosted tool
• Add JIRA links and tags
• Use publish to JIRA option

24

Editing Tests

IDE

• Checkout latest code from git
• Make updates to test case
• Commit using typical git workflows

JIRA

• Use special JIRA field to edit test case
• Routed through Jenkins to Gherkin Builder
• Make updates to test case
• Use publish to JIRA option

25

Executing Tests

Locally

• Checkout latest code from git
• Execute code from command line or IDE

• Remember to include JIRA flag for updates if desired

JIRA

• Use special JIRA field to edit test case
• Taken to custom Jenkins job for test execution
• Navigating back to JIRA shows test case execution

26

Implementation

https://github.com/Coveros/GherkinBuilder
• Gherkin Builder code base consists of two parts

• Glue Code Parser
• Maven project
• Scans provided folder for regular expressions
• Builds javascript file containing possible test steps to be consumed
• Support for multiple input types

• Web App
• PHP Project
• Front end builder, using jquery to build Feature files
• APIs for interacting with JIRA APIs and ZAPI

• Nightly build executes maven project against latest test automation
code
• Pushes any js/php updates and new test steps JS file to gherkin builder server

27

Questions?

